Skip to content Skip to sidebar Skip to footer

Fabrication of Continuous Fiber Reinforced Thermoplastic Composites

Abstract

In this research technologies for the production of continuous fiber-reinforced thermoplastics using additive manufacturing are investigated and evaluated. The focus is on the "Fused Layer Modeling" (FLM) process, which is based on an additive, thermoplastic extrusion process. The possibility of combining the plastic filament with continuous fibers allows a specific fiber reinforcement to be introduced into the part to increase the mechanical properties. First, an overview of the technologies for processing continuous fibers is presented. These strategies differ in the design of the machine (hardware) and the possibilities for the constructive insertion of the continuous fibers in slicing (software). The differences of the technologies are the processing method of the fiber as well as the fiber roving used in the extrusion process. The maximal fiber volume content and the interlaminar fiber-matrix adhesion are investigated in various commercial technologies by means of tensile and bending tests. In conclusion, the different technologies are evaluated with regarding the maximal fiber volume content and quality of interlaminar fiber-matrix adhesion.

Keywords

  • Additive manufacturing
  • Continuous fiber
  • Carbon fiber
  • Fiber-plastic composites

Notes

  1. 1.

    As no explicit data on the fibre characteristics for Markforged are available, the values for the linear mixing rule were chosen based on the data for standard C-fibres in [16] and nylon matrix.

References

  1. van de Werken, N., Tekinalp, H., Khanbolouki, P., Ozcan, S., Williams, A., Tehrani, M.: Additively manufactured carbon fiber-reinforced composites: state of the art and perspective. Addit. Manuf. 31, 100962 (2020). https://doi.org/10.1016/j.addma.2019.100962

    CrossRef  Google Scholar

  2. Suzuki, T., Fukushige, S., Tsunori, M.: Load path visualization and fiber trajectory optimization for additive manufacturing of compo-sites. Addit. Manuf. 31, 100942 (2020). https://doi.org/10.1016/j.addma.2019.100942

    CrossRef  Google Scholar

  3. Dutra, T.A., Ferreira, R.T.L., Resende, H.B., Guimarães, A.: Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic. J. Braz. Soc. Mech. Sci. Eng. 41(3), 133 (2019). https://doi.org/10.1007/s40430-019-1630-1

    CrossRef  Google Scholar

  4. Mohammadizadeh, M., Imeri, A., Fidan, I., Elkelany, M.: 3D printed fiber reinforced polymer composites – structural analysis. Compos. B Eng. 175, 107112 (2019). https://doi.org/10.1016/j.compositesb.2019.107112

    CrossRef  Google Scholar

  5. Der Klift, F.V., Koga, Y., Todoroki, A., Ueda, M., Hirano, Y., Matsuzaki, R.: 3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) tensile test specimens. OJCM 06(01), 18–27 (2016). https://doi.org/10.4236/ojcm.2016.61003

    CrossRef  Google Scholar

  6. Ming, Y., Duan, Y., Wang, B., Xiao, H., Zhang, X.: A novel route to fabricate high-performance 3D printed continuous fiber-reinforced thermosetting polymer composites. Materials 12(9), 1369 (2019). https://doi.org/10.3390/ma12091369

    CrossRef  Google Scholar

  7. Li, N., Li, Y., Liu, S.: Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J. Mater. Process. Technol. 238, 218–225 (2016). https://doi.org/10.1016/j.jmatprotec.2016.07.025

    CrossRef  Google Scholar

  8. Fidan, I., et al.: The trends and challenges of fiber reinforced additive manufacturing. Int. J. Adv. Manuf. Technol. 102(5–8), 1801–1818 (2019). https://doi.org/10.1007/s00170-018-03269-7

    CrossRef  Google Scholar

  9. Grellmann, W., Seidler, S., Altstädt, V. (eds.): Kunststoffprüfung, 3., [updated] Ed. München: Hanser (2015)

    Google Scholar

  10. Chacón, J.M., Caminero, M.A., Núñez, P.J., García-Plaza, E., García-Moreno, I., Reverte, J.M.: Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties. Compos. Sci. Technol. 181, 107688 (2019). https://doi.org/10.1016/j.compscitech.2019.107688

    CrossRef  Google Scholar

  11. ASTM D790-17, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, PA, 2017, www.astm.org

  12. Dickson, A.N., Barry, J.N., McDonnell, K.A., Dowling, D.P.: Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit. Manuf. 16, 146–152 (2017). https://doi.org/10.1016/j.addma.2017.06.004

    CrossRef  Google Scholar

  13. Czasny, M., Goerke, O., Kaba, O., Koerber, S., Schmidt, F., Gurlo, A.: Influence of composition on mechanical properties of additively manufactured composites reinforced with endless carbon fibers. KEM 809, 335–340 (2019). https://doi.org/10.4028/www.scientific.net/KEM.809.335

    CrossRef  Google Scholar

  14. Tian, X., Liu, T., Yang, C., Wang, Q., Li, D.: Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. A Appl. Sci. Manuf. 88, 198–205 (2016). https://doi.org/10.1016/j.compositesa.2016.05.032

    CrossRef  Google Scholar

  15. Domm, M., Schlimbach, J., Mitschang, P.: Optimizing mechanical properties of additively manufactured FRPC. In: 21st International Conference on Composite Materials, Xi'an, p. 12 (2017)

    Google Scholar

  16. Johnson, D.J.: Structure-property relationships in carbon fibres. J. Phys. D. Appl. Phys. 20(3), 286. https://doi.org/10.1088/0022-3727/20/3/007.

  17. Markforged Inc.: Material specifications composites, www.markforged.com. Accessed 11 Feb 2020

  18. Anisioprint LCC: Products CCF&CBF, www.anisoprint.com. Accessed 11 Feb 2020

  19. 9T Labs AG, Material Datasheet CF/PA12, 2019

    Google Scholar

  20. Chacóna, J.M., Caminerob, M.A., Núñezb, P.J., García-Plazab, E., García-Morenob, I., Revertea, J.M.: Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: effect of process parameters on mechanical properties. Compos. Sci. Technol. 181, 107688. https://doi.org/10.1016/j.compscitech.2019.107688

  21. Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix: a review and prospective. Compos. Part B 110, 442–458 (2017)

    Google Scholar

  22. Desktop Metal: Products FiberTM, www.desktopmetal.com. Accessed 11 Feb 2020

  23. Continuous Composites: Continuous fibre 3D-Printing, www.continuouscomposites.com. Accessed 11 Feb 2020

Download references

Acknowledgements

This research was supported by the European Fund for Regional Development (EFRE) and the Oberfrankenstiftung.

Author information

Authors and Affiliations

Corresponding author

Correspondence to Daniel Pezold .

Editor information

Editors and Affiliations

Rights and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pezold, D., Rosnitschek, T., Kleuderlein, A., Döpper, F., Alber-Laukant, B. (2021). Evaluation of Technologies for the Fabrication of Continuous Fiber Reinforced Thermoplastic Parts by Fused Layer Modeling. In: Dröder, K., Vietor, T. (eds) Technologies for economic and functional lightweight design. Zukunftstechnologien für den multifunktionalen Leichtbau. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62924-6_11

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI : https://doi.org/10.1007/978-3-662-62924-6_11

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62923-9

  • Online ISBN: 978-3-662-62924-6

  • eBook Packages: Engineering Engineering (R0)

linoldideady.blogspot.com

Source: https://link.springer.com/chapter/10.1007/978-3-662-62924-6_11

Post a Comment for "Fabrication of Continuous Fiber Reinforced Thermoplastic Composites"